Variation of the Fermi level and the electrostatic force of a metallic nanoparticle upon colliding with an electrode† †Electronic supplementary information (ESI) available: Finite element model description, justification of model assumptions, schematic descriptions of the Fermi level changes upon NP collision with an electrode, the simulations of double layer capacitance of an electrode calculated with different double layer models, 3D plots corresponding to the contour plots of Fig. 1, the effect on the electrolyte concentration and NP radius on the potential distribution, surface charge density plots on the electrode and NP and their comparison with those calculated analytically in the absence of electrolyte, details of the calculations of the interaction between dissimilar parallel plates, and a further discussion of the approximate analytical expressions for the force between NP and electrode in the presence of electrolyte. See DOI: 10.1039/c7sc00848a Click here for additional data file.

نویسندگان

  • Pekka Peljo
  • José A. Manzanares
  • Hubert H. Girault
چکیده

Laboratoire d’Electrochimie Physique et Fédérale de Lausanne (EPFL), Rue de l’In E-mail: pekka.peljo@ep.ch Department of Thermodynamics, Faculty Moliner, 50, E-46100 Burjasot, Spain † Electronic supplementary information description, justication of model assum Fermi level changes upon NP collision double layer capacitance of an electrode models, 3D plots corresponding to the co electrolyte concentration and NP radius charge density plots on the electrode and calculated analytically in the absence of e the interaction between dissimilar paral the approximate analytical expressions fo in the presence of electrolyte. See DOI: 10 Cite this: Chem. Sci., 2017, 8, 4795

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variation of the Fermi level and the electrostatic force of a metallic nanoparticle upon colliding with an electrode.

When a metallic nanoparticle (NP) comes in close contact with an electrode, its Fermi level equilibrates with that of the electrode if their separation is less than the cut-off distance for electron tunnelling. In the absence of chemical reactions in solution, the charge on the metallic nanoparticle is constant outside this range before or after the collision. However, the double layer capacita...

متن کامل

Numerical Simulation of Non-Uniform Gas Diffusion Layer Porosity Effect on Polymer Electrolyte Membrane Fuel Cell Performance

Gas diffusion layers are essential components of proton exchange membrane fuel cell since the reactants should pass through these layers. Mass transport in these layers is highly dependent on porosity. Many of simulations have assumed, for simplicity, the porosity of GDL is constant, but in practice, there is a considerable variation in porosity along gas diffusion layers. In the present study ...

متن کامل

Study on Electrochemical Oxidation of m-Nitrophenol on Various Electrodes Using Cyclic Voltammetry

The electrochemical oxidation behavior of m-nitrophenol (m-NP) was studied comparatively on glassy carbon electrode, Pt electrode, PbO2 electrode, SnO2 electrode, and graphite electrode using cyclic voltammetry. The cyclic voltammetry measurements were performed in acidic (1 M H2SO4, pH 0.4), neutral (1 M Na2SO4, pH 6.8), and...

متن کامل

Supercapacitive Performance of Ordered Mesoporous Carbon (CMK-3) in Neutral Aqueous Electrolyte

Ordered Mesoporous Carbon (OMC) represents an interesting material for electric double layer capacitors which has the high surface area, easily accessed ordered pore channels and lower production cost. In this work, CMK-3 as promising OMC has been fabricated using the ordered mesoporous silica SBA-15 as a template. The structure and morphology of CMK-3 are characterized by X-ray diffraction...

متن کامل

Investigation of Hydroxylated Carbon Felt Electrode in Vanadium Redox Flow Battery by Using Optimized Supporting Electrolyte

Traditional vanadium batteries use pure sulfuric acid as electrolyte, but H2SO4 does not absorb enough vanadium ions to make the electrolyte an efficient energy source. This study investigates the effect of hydroxylation process on electrochemical and operational properties of carbon felt electrode in VOSO4 solution with an optimized supporting electrolyte (a mixture of six parts HCl and 2.5 pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017